Exploring Artificial Intelligence and Machine Learning Methods for Facial Detection and Recognition
DOI:
https://doi.org/10.32628/CSEIT25111667Keywords:
Biometrics, Facial Detection, Facial Recognition, Computer Vision, Biometric Authentication, Machine Learning, Human-Computer InteractionAbstract
Facial detection and identification have become essential technologies in computer vision, artificial intelligence, and biometric authentication. These systems detect and authenticate human faces using digital photos or video frames, serving a vital function in security, surveillance, social media, and tailored user experiences. Facial detection involves identifying faces within an image, while facial recognition extends this by correlating identified faces with stored data to verify identification. Facial recognition technology, a significant application within artificial intelligence, has substantial promise for advancement in security surveillance, mobile computing, and other domains. Recent breakthroughs in deep learning, convolutional neural networks (CNNs), and machine learning algorithms have markedly improved the precision and efficiency of these systems. Notwithstanding the advancements, obstacles such as fluctuations in illumination, facial emotions, age, and occlusion continue to impact performance. This study examines the methodology, applications, and limits of face detection and recognition systems, as well as ethical problems and privacy consequences. The growing integration of mobile devices, intelligent surveillance systems, and digital verification platforms is anticipated to influence the future of human-computer interaction. Current research seeks to enhance real-time recognition skills and rectify biases to make these systems more inclusive and dependable. These factors are essential for the responsible development of face recognition technology, assuring ethical practices and protecting privacy.
📊 Article Downloads
References
A. Eng, and L. A. Wahsheh, “Look into my eyes: A survey of biometric security,” In 2013 10th International Conference on Information Technology: New Generations, pp. 422 - 427, April 2013, IEEE DOI: https://doi.org/10.1109/ITNG.2013.65
Y. Perwej, S. A. Hann, N. Akhtar, “The State-of-the-Art Handwritten Recognition of Arabic Script Using Simplified Fuzzy ARTMAP and Hidden Markov Models”, International Journal of Computer Science and Telecommunications (IJCST), Sysbase Solution (Ltd), UK, London, ISSN 2047-3338, Volume, Issue 8, Pages, 26 - 32, 2014
M. Abo-Zahhad, S. M. Ahmed, and S. N. Abbas, “A novel biometric approach for human identification and verification using eye blinking signal,” IEEE Signal Processing Letters, vol. 22, pp. 876 - 880, 2014 DOI: https://doi.org/10.1109/LSP.2014.2374338
Bhavesh Kumar Jaisawal, Y. Perwej, Sanjay Kumar Singh, Susheel Kumar, Jai Pratap Dixit, Niraj Kumar Singh, “An Empirical Investigation of Human Identity Verification Methods” International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990 , Online ISSN : 2394-4099, Volume 10, Issue 1, Pages 16-38, 2022, DOI: 10.32628/IJSRSET2310012 DOI: https://doi.org/10.32628/IJSRSET2310012
Y. Perwej, “Unsupervised Feature Learning for Text Pattern Analysis with Emotional Data Collection: A Novel System for Big Data Analytics”, IEEE International Conference on Advanced computing Technologies & Applications (ICACTA'22), SCOPUS, IEEE No: #54488 ISBN No Xplore: 978-1-6654-9515-8, Coimbatore, India, 2022, DOI: 10.1109/ICACTA54488.2022.9753501 DOI: https://doi.org/10.1109/ICACTA54488.2022.9753501
M. Tistarelli, and M. S. Nixon, " Advances in Biometrics: Third International Conferences, ICB 2009, Alghero, Italy, June 2-5, 2009, Proceedings, vol. 5558, 2019, Springer DOI: https://doi.org/10.1007/978-3-642-01793-3
Ali Mir Arif Mir Asif, S. Hannan, Y. Perwej, Mane Arjun Vithalrao, “An Overview and Applications of Optical Character Recognition”, International Journal of Advance Research in Science and Engineering (IJARSE), India, ISSN 2319-8346 (P), ISSN-2319-8354(E), Volume 3, Issue 7, Pages 261- 274, June 2014
Y. Perwej, Asif Perwej, Firoj Parwej, “An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection”, for published in the International journal of Multimedia & Its Applications (IJMA), Academy & Industry Research Collaboration Center (AIRCC) , USA , Volume 4, No.2, Pages 21- 38, April 2012, DOI: 10.5121/ijma.2012.4202 DOI: https://doi.org/10.5121/ijma.2012.4202
Y. Perwej, Nikhat Akhtar, Devendra Agarwal, “The emerging technologies of Artificial Intelligence of Things (AIoT) current scenario, challenges, and opportunities”, Book Title “Convergence of Artificial Intelligence and Internet of Things for Industrial Automation”, SCOPUS, ISBN: 978-1-032-42844-4, CRC Press, Taylor & Francis Group, 2024, https://www.taylorfrancis.com/chapters/edit/10.1201/9781003509240-1/emerging-technologiesartificial-intelligence-things-aiot-current-scenario-challenges-opportunities-yusuf-perwej-nikhatakhtar-devendra-agarwal?context=ubx&refId=537f1a8f-6a94-4439-b337-3ad3d1ce8845, DOI: 10.1201/9781003509240-1 DOI: https://doi.org/10.1201/9781003509240-1
N. Hezil, and A. Boukrouche, " Multimodal biometric recognition using human ear and palmprint. IET Biometrics, vol. 6, pp. 351 - 359, 2017 DOI: https://doi.org/10.1049/iet-bmt.2016.0072
A. Trivedi, C. Mani Tripathi, Y. Perwej, A. K. Srivastava, and N. Kulshrestha, “Face Recognition Based Automated Attendance Management System,” International Journal of Scientific Research in Science and Technology (www.ijsrst.com), vol. 9, no. 1, pp. 261–268, 2022, doi: 10.32628/IJSRST229147 DOI: https://doi.org/10.32628/IJSRST229147
Ankit Shukla, Farheen Siddiqui, Y. Perwej, Sarvesh Kumar, Nikhat Akhtar, “An Intelligent Framework for Emotion Detection from Speech Signals”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 6, Pages 682 - 688, June 2025, DOI: 10.6084/m9.jetir.JETIR2506069
Chriskos, P.; Munro, J.; Mygdalis, V.; Pitas, I. Face detection hindering. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 403–407. DOI: https://doi.org/10.1109/GlobalSIP.2017.8308673
Alameda-Pineda, X.; Ricci, E.; Sebe, N. Analyzing the performance of CNN-based face recognition systems for occluded face verification. In Proceedings of the 2016 IEEE International Joint Conference on Biometrics (IJCB), Ljubljana, Slovenia, 25–28 September 2016; pp. 1–8.
Bao, X.; Hu, Y.; Chen, Y.; Sun, L. Deep learning-based face recognition: A survey. J. Sens. 2018.
Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A. VGGFace2: A data-set for recognising faces across pose and age. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 67–74. DOI: https://doi.org/10.1109/FG.2018.00020
Wayman, J.; Jain, A.;Maltoni, D.;Maio, D. Biometric Recognition: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2005.
Y. Perwej, “An Optimal Approach to Edge Detection Using Fuzzy Rule and Sobel Method”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE), ISSN (Print) : 2320 – 3765, ISSN (Online): 2278 – 8875, Volume 4, Issue 11, Pages 9161-9179, 2015, DOI: 10.15662/IJAREEIE.2015.0411054
Seyedarabi, H.; Lee, W.-S.; Aghagolzadeh, A.; Khanmohammadi, S. Facial Expressions Recognition in a Single Static as well as Dynamic Facial Images Using Tracking and Probabilistic Neural Networks. Adv. Image Video Technol. 2006, 4319, 292–304. DOI: https://doi.org/10.1007/11949534_29
Khoeun, R.; Chophuk, P.; Chinnasarn, K. Emotion Recognition for Partial Faces Using a Feature Vector Technique. Sensors 2022, 22, 4633.
Mukhiddinov, M.; Djuraev, O.; Akhmedov, F.; Mukhamadiyev, A.; Cho, J. Masked Face Emotion Recognition Based on Facial Landmarks and Deep Learning Approaches for Visually Impaired People. Sensors 2023, 23, 1080. DOI: https://doi.org/10.3390/s23031080
Neha Kulshrestha, Nikhat Akhtar, Yusuf Perwej, “Deep Learning Models for Object Recognition and Quality Surveillance”, Accepted International Conference on Emerging Trends in IoT and Computing Technologies (ICEICT-2022), ISBN 978-10324-852-49, SCOPUS, Routledge, Taylor & Francis, CRC Press, Chapter 75, pages 508-518, Goel Institute of Technology & Management, Lucknow, May 2022 Link - https://www.routledge.com/Emerging-Trends-in-IoT-and-Computing-Technologies-Proceedings-of International/Tripathi-Verma/p/book/9781032485249# DOI: 10.1201/9781003350057-75 DOI: https://doi.org/10.1201/9781003350057-75
Pann, V.; Lee, H.J. Effective Attention-Based Mechanism for Masked Face Recognition. Appl. Sci. 2022, 12, 5590. DOI: https://doi.org/10.3390/app12115590
Shobhit Kumar Ravi, Shivam Chaturvedi, Dr. Neeta Rastogi, N. Akhtar, Y. Perwej, “A Framework for Voting Behavior Prediction Using Spatial Data”, International Journal of Innovative Research in Computer Science & Technology (IJIRCST), ISSN: 2347-5552, Volume 10, Issue 2, Pages 19-28, 2022, DOI: 10.55524/ijircst.2022.10.2.4 DOI: https://doi.org/10.55524/ijircst.2022.10.2.4
N.Akhtar, Kumar Bibhuti B. Singh, Devendra Agarwal, Y. Perwej, “Improving Quality of Life with Emerging AI and IoT Based Healthcare Monitoring Systems”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 1, Pages 96-107, January 2025, DOI: 10.32628/CSEIT2514551 DOI: https://doi.org/10.32628/CSEIT2514551
Y. Perwej, Firoj Parwej, Asif Perwej, “Copyright Protection of Digital Images Using Robust Watermarking Based on Joint DLT and DWT”, International Journal of Scientific & Engineering Research (IJSER), France, ISSN 2229-5518, Volume 3, Issue 6, Pages 1- 9, June 2012
Y.Perwej, Syed Qamar Abbas, Jai Pratap Dixit, Nikhat Akhtar, Anurag Kumar Jaiswal, “A Systematic Literature Review on the Cyber Security”, International Journal of Scientific Research and Management (IJSRM), ISSN (e): 2321-3418, Volume 9, Issue 12, Pages 669 - 710, December 2021, DOI: 10.18535/ijsrm/v9i12.ec04 DOI: https://doi.org/10.18535/ijsrm/v9i12.ec04
Strohmayer, J.; Knapp, J.; Kampel, M. Efficient Models for Real-Time Person Segmentation on Mobile Phones. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 651–655. DOI: https://doi.org/10.23919/EUSIPCO54536.2021.9616237
Gao, F.; Li, H.; Fei, J.; Huang, Y.; Liu, L. Segmentation-Based Background-Inference and Small-Person Pose Estimation. IEEE Signal Process. Lett. 2022, 29, 1584–1588. DOI: https://doi.org/10.1109/LSP.2022.3186594
Tian, Y.-I.; Kanade, T.; Cohn, J. Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 97–115 DOI: https://doi.org/10.1109/34.908962
Park, S.;Wallraven, C. Comparing Facial Expression Recognition in Humans and Machines: Using CAM, GradCAM, and Extremal Perturbation. In Proceedings of the Pattern Recognition: 6th Asian Conference, ACPR 2021, Jeju Island, Republic of Korea, 9–12 November 2021 DOI: https://doi.org/10.1007/978-3-031-02375-0_30
Khoeun, R.; Chophuk, P.; Chinnasarn, K. Emotion Recognition for Partial Faces Using a Feature Vector Technique. Sensors 2022, 22, 4633 DOI: https://doi.org/10.3390/s22124633
Deng, J.; Guo, J.; Yang, J.; Xue, N.; Kotsia, I.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5962–5979 DOI: https://doi.org/10.1109/TPAMI.2021.3087709
Mollahosseini, A.; Hasani, B.; Mahoor, M.H. AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Trans. Affect. Comput. 2017, 10, 18–31 DOI: https://doi.org/10.1109/TAFFC.2017.2740923
Farheen Siddiqui, Shobhit Sinha, Y. Perwej, Sarvesh Kumar, Nikhat Akhtar, “Deep Learning-Based Analysis of ECG Images for Intelligent Cardiovascular Diagnosis”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 6, Pages 252 - 259, June 2025, DOI: 10.6084/m9.jetir. JETIR2506930
Hina Rabbani, Sana Rabbani, Y. Perwej, Saurav Kumar, Nikhat Akhtar, “AI-Driven Enhancement of Diabetes Diagnosis Using Deep Learning Techniques”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 6, Pages 757 - 763, June 2025, DOI: 10.6084/m9.jetir. JETIR2506297
Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503
Moschoglou, S.; Papaioannou, A.; Sagonas, C.; Deng, J.; Kotsia, I.; Zafeiriou, S. AgeDB: The First Manually Collected, In-the-Wild Age Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionWorkshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1997–2005 DOI: https://doi.org/10.1109/CVPRW.2017.250
Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503 DOI: https://doi.org/10.1109/LSP.2016.2603342
Mahmoud AbouGhaly, Y. Perwej, Mumdouh Mirghani Mohamed Hassan, Nikhat Akhtar, “Smart Sensors and Intelligent Systems: Applications in Engineering Monitoring” , for published in theInternational Journal of Intelligent Systems and Applications in Engineering, SCOPUS, ISSN: 2147- 6799, Volume 12, Issue 22s, Pages 720–727, July 2024
Mansi Bajpai, Atebar Haider, Alok Mishra, Yusuf Perwej, Neeta Rastogi, “A Novel Vote Counting System Based on Secure Blockchain” , International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990 , Online ISSN : 2394-4099, Volume 9, Issue 4, Pages 69-79, July-August-2022, DOI: 10.32628/IJSRSET22948 DOI: https://doi.org/10.32628/IJSRSET22948
Kumar Bibhuti B. Singh, Saurabh Sharma, Yusuf Perwej, “Emerging Blockchain Integrated E-Commerce using Django”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990 , Online ISSN : 2394-4099, Volume 11, Issue 3, Pages 785-793, May-June - 2024, DOI: 10.32628/IJSRST24113247 DOI: https://doi.org/10.32628/IJSRST24113247
Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823 DOI: https://doi.org/10.1109/CVPR.2015.7298682
Nam, H.-H.; Kang, B.-J.; Park, K.-R. Comparison of Computer and Human Face Recognition According to Facial Components. J. Korea Multimedia Soc. 2012, 15, 40–50 DOI: https://doi.org/10.9717/kmms.2012.15.1.040
Schneider, J.; Sandoz, V.; Equey, L.; Williams-Smith, J.; Horsch, A.; Graz, M.B. The Role of Face Masks in the Recognition of Emotions by Preschool Children. JAMA Pediatr. 2022, 176, 96 DOI: https://doi.org/10.1001/jamapediatrics.2021.4556
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.